71 research outputs found

    Protein assemblies: nature-inspired and designed nanostructures

    Get PDF
    Ordered protein assemblies are attracting interest as next-generation biomaterials with a remarkable range of structural and functional properties, leading to potential applications in biocatalysis, materials templating, drug delivery and vaccine development. This Review covers ordered protein assemblies including protein nanowires/nanofibrils, nanorings, nanotubes, designed two- and three-dimensional ordered protein lattices and protein-like cages including polyhedral virus-like cage structures. The main focus is on designed ordered protein assemblies, in which the spatial organization of the proteins is controlled by tailored noncovalent interactions (including metal ion binding interactions, electrostatic interactions and ligand–receptor interactions among others) or by careful design of modified (mutant) proteins or de novo constructs. The modification of natural protein assemblies including bacterial S-layers and cage-like and rod-like viruses to impart novel function, e.g. enzymatic activity, is also considered. A diversity of structures have been created using distinct approaches, and this Review provides a summary of the state-of-the-art in the development of these systems, which have exceptional potential as advanced bionanomaterials for a diversity of applications

    Symmetryâ Directed Selfâ Assembly of a Tetrahedral Protein Cage Mediated by de Novoâ Designed Coiled Coils

    Full text link
    The organization of proteins into new hierarchical forms is an important challenge in synthetic biology. However, engineering new interactions between protein subunits is technically challenging and typically requires extensive redesign of proteinâ protein interfaces. We have developed a conceptually simple approach, based on symmetry principles, that uses short coiledâ coil domains to assemble proteins into higherâ order structures. Here, we demonstrate the assembly of a trimeric enzyme into a wellâ defined tetrahedral cage. This was achieved by genetically fusing a trimeric coiledâ coil domain to its C terminus through a flexible polyglycine linker sequence. The linker length and coiledâ coil strength were the only parameters that needed to be optimized to obtain a high yield of correctly assembled protein cages.Geometry lesson: A modular approach for assembling proteins into largeâ scale geometric structures was developed in which coiledâ coil domains acted as â twist tiesâ to facilitate assembly. The geometry of the cage was specified primarily by the rotational symmetries of the coiled coil and building block protein and was largely independent of protein structural details.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/1/cbic201700406_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/2/cbic201700406.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/3/cbic201700406-sup-0001-misc_information.pd

    Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Get PDF
    BACKGROUND: Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. RESULTS: Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. CONCLUSION: These results support two of our hypotheses that systemic administration of IGF-I or GH+IGF-I improve healing in collagenous tissue. Systemic administration of IGF-I improves healing in collagenous extracellular matrices from loaded and unloaded tissues. Growth hormone alone did not result in any significant improvement contrary to our hypothesis, while GH + IGF-I produced remarkable improvement in hindlimb unloaded animals

    Functional tissue engineering of ligament healing

    Get PDF
    Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE) approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally

    Description, Conversion, and Planning for Semantic Interoperability

    No full text
    The issue of semantic interoperability pervades distributed systems whose components are designed independently. For example, when a source intends 70 to mean "70 meters, with 20% error", the receiver must not interpret the result as "70 feet, exactly". We examine semantic interoperability problems in a distributed object management environment, i.e., for a system of distributed objects and services rather than for a database. A semantic interoperability service is defined, and its required functional components - argument describers, conversion functions, and a planner - are identified. We categorize levels of service that each component may provide, and how these choices affect system functionality and evolution. We also begin to examine the various ways to map the functional architectures to software components -- sources, receivers, mediators, and request broker -- and data administration tasks. Finally, we contrast with semantic interoperability for database clients, and discuss w..

    View Security as the Basis for Data Warehouse Security

    No full text
    Access . permissions in a data warehouse are currently managed in a separate world from the sources' policies. The consequences are inconsistencies, slow response to change, and wasted administrative work. We present a different approach, which treats the sources' exported tables and the warehouse as part of the same distributed database. Our main result is a way to control derived products by extending SQL grants rather than creating entirely new mechanisms. We provide a powerful, sound inference theory that derives permissions on warehouse tables (both materialized and virtual), making the system easier to administer and its applications more robust. We also propose a new permission construct suitable for views that filter data from mutually-suspicious parties. 1 Introduction A key challenge for data warehouse security is how to manage the entire system coherently -- from sources and their export tables, to warehouse stored tables (conventional and cubes) and vi..
    • …
    corecore